能源与动力工程学院
旧版入口| 学校主页| 加入收藏 | 设为首页

师资队伍

teaching staff

热点文章

站内搜索

讲师

当前位置: 首 页 > 师资队伍 > 工程热物理系 > 讲师 > 正文
姓 名 隆瑞 性 别
职 称 讲师 毕业学校
个人主页 http://orcid.org/0000-0003-4911-1716
联系方式
邮 箱 R_Long@hust.edu.cn
通讯地址 华中科技大学动力楼412室
个人资料简介
隆瑞,男,工学博士,华中科技大学能源与动力工程学院讲师,为刘伟老师热科学与工程实验室团队骨干成员。主要从事新能源与低品位热能利用,纳米通道能量转换与离子输运特性相关研究。主持国家自然科学基金青年基金1项,并参与国家自然科学基金重点项目等相关研究。以第一作者或通讯作者身份在J. Power Sources, J. Membrane Sci., Energy, Chem. Eng. J.,Phys. Rev. E, Phys. Chem. Chem. Phys., Appl. Math. Model.等发表31篇SCI收录论文, 其中中科院分区Top期刊20篇。为Energy, Journal of Power Sources, Energy Conversion and Management, Science of the Total Environment等杂志审稿人。并获得Energy, Journal of Power Sources, Energy Conversionand Management等杂志杰出审稿人荣誉称号。
      研究小组鼓励研究生的创新思维,并为研究生自主探索的项目提供充足的设备和经费支持,为学生提供优厚的待遇。研究小组工作充实,气氛融洽,成果丰硕,充满活力,期待同学们加入。硕士期间,若有读博打算,可推荐至本课题组刘伟或刘志春老师名下读博深造。

教育及工作经历

    2016.7-至今 华中科技大学,能源学院,工程热物理系,讲师
    2012.9-2016.6 华中科技大学,能源学院,工程热物理,博士
    2011.9-2012.6 华中科技大学,能源学院,工程热物理,硕士
    2007.9-2011.6 华中科技大学,能源学院,热能与动力工程,学士

研究方向

    1、新能源及低温热能利用。利用新的方式比如电池、膜基能量转换技术来高效利用太阳能、海水盐梯度能量。
    2、纳米通道能量转换与离子输运调控。利用数值模拟和实验研究手段,基于纳米膜回收溶液盐差能,可用于生物细胞内离子发电,DNA分离等。
    3、高热流密度电子器件热管理。

科研项目

    1、国家自然科学基金青年项目:基于膜蒸馏与反电渗析的低温余热利用的新型热力系统研究(2018-至今)
    2、国家自然科学基金重点项目:基于斯特林热机的能量转换与传递过程基础问题研究 (2018-至今)
    3、国家973计划课题项目:余热能级及梯级利用的定量化原则及其在热力系统中的应用(2013 - 至今)
    4、国家自然科学基金重点项目:先进传热强化理论及机理研究(2011-2014)

代表性论文与专利

    目前隆瑞老师研究小组在 J. Power Sources, J. Membrane Sci., Energy, Chem. Eng. J.,Phys. Rev. E, Phys. Chem. Chem. Phys., Appl. Math. Model.等发表30余篇SCI收录论文。具体期刊目录如下:
    2019年
    •    1. Long R, Lai X, Liu Z, Liu W. Pressure retarded osmosis: Operating in a compromise between power density and energy efficiency. Energy. 2019;172:592-8.
    •    2. Kuang Z, Zhang D, Shen Y, Long R*, Liu Z, Liu W. Bioinspired fractal nanochannels for high-performance salinity gradient energy conversion. Journal of Power Sources. 2019;418:33-41.
    2018年
    •    1. Long R, Liu Z, Liu W. Performance analysis for minimally nonlinear irreversible refrigerators at finite cooling power. Physica A, 2018, 496:137-146.
    •    2. Long R, Lai X, Liu Z, Liu W. Direct contact membrane distillation system for waste heat recovery: Modelling and multi-objective optimization. Energy, 2018, 148:1060-1068.
    •    3. Lai X, Long R*, Liu Z, Liu W*. A hybrid system using direct contact membrane distillation for water production to harvest waste heat from the proton exchange membrane fuel cell. Energy, 2018, 147:578-586.
    •    4. Long R, Kuang Z, Liu Z, Liu W. Reverse electrodialysis in bilayer nanochannels:salinity gradient-driven power generation, Physical Chemistry Chemical Physics, 2018, 20: 7295-7302.
    •    5. Long R, Li B, Liu Z, Liu W. Reverse electrodialysis: Modelling and performance analysis based on multi-objective optimization. Energy. 2018;151:1-10.
    •    6. Long R, Lai X, Liu Z, Liu W. A continuous concentration gradient flow electrical energy storage system based on reverse osmosis and pressure retarded osmosis. Energy.2018;152:896-905.
    •    7. Long R, Kuang Z, Liu Z, Liu W. Temperature regulated reverse electrodialysis in charged nanopores. Journal of Membrane Science. 2018;561:1-9.
    •    8. Long R, Li B, Liu Z, Liu W. Performance analysis of reverse electrodialysis stacks: Channel geometry and flow rate optimization. Energy. 2018;158:427-36.
    •    9. Lai X, Long R*, Liu Z, Liu W*. Stirling engine powered reverse osmosis for brackish water desalination to utilize moderate temperature heat. Energy. 2018;165:916-30.
    •    10. D.D. Dai, F. Yuan, R. Long, Z.C. Liu, W. Liu. Imperfect regeneration analysis of Stirling engine caused by temperature differences in regenerator. Energy Conversion and Management, 2018, 158:60-69.
    •    11. Dongdong Dai, Fang Yuan, Rui Long, Zhichun Liu, Wei Liu. Performance analysis and multi-objective optimization of a Stirling engine based on MOPSOCD. International Journal of Thermal Sciences, 2018, 124:399-406
    •    12.Rui Long*, Zhengfei Kuang, BaodeLi, Zhichun. Liu, Wei Liu*. Exergy analysis andperformance optimization of Kalina cycle system 11 (KCS-11) for low grade wasteheat recovery. 10th InternationalConference on Applied Energy (ICAE2018), 22-25 August 2018, Hong Kong, China.
    2017年
    •    1. Long R, Li B, Liu Z, Liu W. Hybrid membrane distillation-reverse electrodialysis electricity generation system to harvest low-grade thermal energy. Journal of Membrane Science. 2017;525:107-15.
    2016年
    •    1. Long R, Liu W. Efficiency and its bounds of minimally nonlinear irreversible heat engines at arbitrary power. Physical Review E. 2016;94(5):052114.
    •    2.Long R, Li B, Liu W. Performance analysis for Feynman's ratchet as a refrigerator with heat leak under different figure of merits. Applied Mathematical Modelling. 2016;40(23–24):10437-46.
    •    3.Long R, Li BD, Liu ZC, Liu W. Ecological analysis of a thermally regenerative electrochemical cycle, Energy, 2016; 107: 95-102.
    •    4.Long R, Li BD, Liu ZC, Liu W. Performance analysis of a dual loop thermally regenerative electrochemical cycle for waste heat recovery, Energy, 2016; 107: 388-395.
    •    5.Long R, Li BD, Liu ZC, Liu W. Performance analysis of a solar-powered electrochemical refrigerator, Chemical Engineering Journal, 2016; 284:325-332.
    •    6.Long R, Liu W. Ecological optimization and coefficient of performance bounds for general refrigerators, Physica A, 2016; 443:14-21.
    •    7. Li BD,Long R*,Liu ZC,Liu W*. Performance analysis of a thermally regenerative electrochemical refrigerator. Energy,2016,112:43-51.
    2015年
    •    1.Long R, Li BD, Liu ZC, Liu W. Performance analysis of a thermally regenerative electrochemical cycle for harvesting waste heat, Energy, 2015; 87: 463-469.
    •    2.Long R, Li BD, Liu ZC, Liu W. Performance analysis of a solar-powered solid state heat engine for electricity generation, Energy, 2015; 93:165-172.
    •    3.Long R, Li BD, Liu ZC, Liu W. Multi-objective optimization of a continuous thermally regenerative electrochemical cycle for waste heat recovery, Energy, 2015;93:1022-1029.
    •    4.Long R, Li BD, Liu ZC, Liu W. A hybrid system using a regenerative electrochemical cycle to harvest waste heat from the proton exchange membrane fuel cell, Energy, 2015;93: 2079-2086.
    •    5.Long R, Liu W. Unified trade-off optimization for general heat devices with nonisothermal processes. Physical Review E, 2015; 91(4):042127.
    •    6.Long R, Liu W. Performance of quantum Otto refrigerators with squeezing, Physical Review E, 2015; 91(6):062137.
    •    7.Long R, Liu W. Performance of micro two-level heat devices with prior information, Physics Letters A, 2015, 379:1979-1982.
    •    8.Long R, Liu W. Ecological optimization for general heat engines. Physica A, 2015; 434:232-239.
    •    9.Long R, Liu W. Coefficient of performance and its bounds with the figure of merit for a general refrigerator. Physica Scripta, 2015; 90(2):025207.
    2014年
    •    1. Long R, Bao YJ, Huang XM, Liu W. Exergy analysis and working fluid selection of organic Rankine cycle for low grade waste heat recovery. Energy, 2014; 73:475-483.
    •    2.Long R, Liu Z, Liu W. Performance optimization of minimally nonlinear irreversible heat engines and refrigerators under a trade-off figure of merit. Physical Review E, 2014; 89(6):062119.
    •    3.Long R, Liu W. Coefficient of performance and its bounds for general refrigerators with nonisothermal processes. Journal of Physics A: Mathematical and Theoretical, 2014; 47(32):325002.


所获荣誉和奖励

    1. 华中科技大学博士学位论文创新基金
    2. 博士研究生国家奖学金