能源与动力工程学院
旧版入口| 学校主页| English| 加入收藏 | 设为首页

师资队伍

teaching staff

热点文章

站内搜索

讲师

当前位置: 首 页 > 师资队伍 > 煤燃烧国家重点实验室 > 讲师 > 正文
姓 名 陈应泉 性 别
职 称 毕业学校 华中科技大学
个人主页 http://sklccfbg.energy.hust.edu.cn
联系方式
邮 箱 chenyingquan@hust.edu.cn
通讯地址 华中科技大学煤燃烧国家重点实验室409
个人资料简介
陈应泉,男,工学博士,2007年毕业于华中科技大学能源与动力工程学院,获学士学位;2014年在华中科技大学煤燃烧国家重点实验室取得热能工程专业博士学位。主要从事生物质全组分热分解机制、生物质热解多联产过程调控、生物炭基高性能材料制备及应用等方面的研究。作为第一负责人主持承担国家自然科学基金面上项目1项、国家重点专项子课题1项、国家自然科学基金青年基金1项、中国博士后科学基金特别资助1项和面上项目2项。作为主要完成人获得了全球可再生能源领域最具投资价值的领先技术蓝天奖1项、中国侨界贡献奖1项和中国专利优秀奖1项。已发表学术论文60余篇,其中以第一作者/通讯作者发表SCI论文20余篇,3篇入选ESI高引论文。获得授权专利5项,公开发明专利6项。
欢迎能源、材料、化工、环境等专业背景的学生报考本课题组研究生

教育及工作经历

    2003.09-2007.06    武汉,华中科技大学,热能工程专业,本科
    2007.09-2014.01    武汉,华中科技大学,热能工程专业,博士,导师:陈汉平
    2014.02-2016.05    武汉,华中科技大学,材料科学专业,博士后,合作导师:黄云辉
    2016.07-2018.06武汉,华中科技大学,热能工程专业,博士后,合作导师:陈汉平
    2018.07-直径    武汉,华中科技大学煤燃烧国家重点实验室,讲师

研究方向

    1)    生物质基碳材料制备与应用,如超级电容器、非对称锂钠电池等
    2)    生物质热解机理
    3)    生物质热解多联产

科研项目

    国家自然科学基金面上项目,生物质选择性富氮热解过程中氮素迁徙与功能化调控机制的基础研究,63万元,2019.1-2022.12
    国家重点专项子课题,基于热解过程调控的热解残渣预调质技术,101万元,2019.1-2022.12
    国家自科基金青年项目,生物质富氮热解联产高值含氮油炭产品的机制研究,25万元,2015.01-2017.12
    中国博士后基金特别资助项目,微藻与废弃塑料混合催化热解制备高值油炭产品的研究,15万元,2017.06-2018.06
    中国博士后基金面上项目,废塑料热解催化联产富氢气体及碳纳米管,5万元,2016.10-2017.10
    中国博士后基金面上项目,生物质富氮热解联产高值油炭产品的机制研究,5万元,2014.06-2015.06

代表性论文与专利

    第一作者论文:
    1.Chen, Y.Q., et al., Biomass Pyrolytic Polygeneration System: Adaptability for Different Feedstocks. Energy & Fuels, 2016. 30(1): p. 414-422.
    2.Chen, Y.Q., et al., Biomass-based pyrolytic polygeneration system on cotton stalk pyrolysis: Influence of temperature. Bioresource Technology, 2012. 107: p. 411-418.
    3.Chen, Y., et al., Effect of volatiles interaction during pyrolysis of cellulose, hemicellulose, and lignin at different temperatures. Fuel, 2019. 248: p. 1-7.
    4.Chen, Y.Q., et al., Evolution of functional groups and pore structure during cotton and corn stalks torrefaction and its correlation with hydrophobicity. Fuel, 2014. 137: p. 41-49.
    5.Chen, Y.Q., et al., Generalized two-dimensional correlation infrared spectroscopy to reveal the mechanisms of lignocellulosic biomass pyrolysis. Proceedings of the Combustion Institute, 2019. 37(3): p. 3013-3021.
    6.Chen, Y.Q., et al., The structure evolution of biochar from biomass pyrolysis and its correlation with gas pollutant adsorption performance. Bioresource Technology, 2017. 246: p. 101-109.
    7.Chen, Y.Q., et al., Torrefaction of agriculture straws and its application on biomass pyrolysis poly-generation. Bioresource Technology, 2014. 156: p. 70-77.
    通讯作者论文:
    1.Wang, L., et al., Investigation of the pyrolysis characteristics of guaiacol lignin using combined Py-GC× GC/TOF-MS and in-situ FTIR. Fuel, 2019. 251: p. 496-505.
    2.Tang, Z.Y., et al., Co-pyrolysis of microalgae and plastic: Characteristics and interaction effects. Bioresource Technology, 2019. 274: p. 145-152.
    3.Liu, H., et al., Hydrothermal carbonization of natural microalgae containing a high ash content. Fuel, 2019. 249: p. 441-448.
    4.Xia, S.W., et al., Pyrolysis behavior and economics analysis of the biomass pyrolytic polygeneration of forest farming waste. Bioresource Technology, 2018. 270: p. 189-197.
    5.Wang, X.H., et al., Comparative study of wet and dry torrefaction of corn stalk and the effect on biomass pyrolysis polygeneration. Bioresource Technology, 2018. 258: p. 88-97.
    6.Chen, W., et al., Influence of Biochar Addition on Nitrogen Transformation during Copyrolysis of Algae and Lignocellulosic Biomass. Environmental Science & Technology, 2018. 52(16): p. 9514-9521.
    7.Chen, W., et al., Catalytic deoxygenation co-pyrolysis of bamboo wastes and microalgae with biochar catalyst. Energy, 2018. 157: p. 472-482.
    8.Zhu, D.C., et al., Fouling and Slagging Characteristics during Co-combustion of Coal and Biomass. Bioresources, 2017. 12(3): p. 6322-6341.
    9.Wu, K., et al., Characterization of dairy manure hydrochar and aqueous phase products generated by hydrothermal carbonization at different temperatures. Journal of Analytical and Applied Pyrolysis, 2017. 127: p. 335-342.
    10.Li, J., et al., Correlation of Feedstock and Bio-oil Compound Distribution. Energy & Fuels, 2017. 31(7): p. 7093-7100.
    11.Hu, J.H., et al., Evolution of char structure during mengdong coal pyrolysis: Influence of temperature and K2CO3. Fuel Processing Technology, 2017. 159: p. 178-186.
    12.Gao, Y., et al., Pyrolysis of rapeseed stalk: Influence of temperature on product characteristics and economic costs. Energy, 2017. 122: p. 482-491.
    13.Chen, X., et al., Catalytic fast pyrolysis of biomass to produce furfural using heterogeneous catalysts. Journal of Analytical and Applied Pyrolysis, 2017. 127: p. 292-298.
    14.Chen, W., et al., Algae pyrolytic poly-generation: Influence of component difference and temperature on products characteristics. Energy, 2017. 131: p. 1-12.
    15.Chen, W., et al., Transformation of Nitrogen and Evolution of N-Containing Species during Algae Pyrolysis. Environmental Science & Technology, 2017. 51(11): p. 6570-6579.
    16.Chen, H.P., et al., NOx precursors from biomass pyrolysis: Distribution of amino acids in biomass and Tar-N during devolatilization using model compounds. Fuel, 2017. 187: p. 367-375.
    17.Yang, H.P., et al., Application of biomass pyrolytic polygeneration technology using retort reactors. Bioresource Technology, 2016. 200: p. 64-71.
    18.Yang, H.P., et al., Biomass-Based Pyrolytic Polygeneration System for Bamboo Industry Waste: Evolution of the Char Structure and the Pyrolysis Mechanism. Energy & Fuels, 2016. 30(8): p. 6430-6439.
    19.Gao, Y., et al., Use of Extreme Vertices Method for Analysis of How Proportional Composition Affects Component Interactions and Product Distribution during Hydrothermal Treatment. Bioresources, 2016. 11(2): p. 4899-4920.
    20.Chen, W., et al., Biomass pyrolysis for nitrogen-containing liquid chemicals and nitrogen-doped carbon materials. Journal Of Analytical And Applied Pyrolysis, 2016. 120: p. 186-193.
    21.Chen, H.P., et al., Biomass Pyrolytic Polygeneration of Tobacco Waste: Product Characteristics and Nitrogen Transformation. Energy & Fuels, 2016. 30(3): p. 1579-1588.
    22.Yang, H.P., et al., Influence of Inherent Silicon and Metals in Rice Husk on the Char Properties and Associated Silica Structure. Energy & Fuels, 2015. 29(11): p. 7327-7334.

所获荣誉和奖励

    1)    生物质热解联产联供高值化综合利用技术    全球可再生能源领域最具投资价值的领先技术蓝天奖    联合国工业发展组织    2014年    排名2
    2)    一种连续式生物质热解炭气油多联产系统    中国专利优秀奖    国家知识产权局    2015年    排名2
    3)    含碳固体燃料高效低耗综合利用关键技术及应用    中国侨界贡献奖-创新 成果奖    中国侨联    2014年    排名7